South African, Chinese researchers jointly make quantum communications breakthrough

24th January 2020

By: Rebecca Campbell

Creamer Media Senior Deputy Editor

     

Font size: - +

A joint team composed of researchers from South Africa’s University of the Witwatersrand (Wits), in Johannesburg, and China’s Huazhang University of Science and Technology (HUST) in Wuhan, has successfully demonstrated the transmission of “multiple quantum patterns of twisted light” down a 250-m-long conventional optical fibre link. Normally, such a conventional link could only carry a single pattern of light.

The research team was led by Wits School of Physics Professor Andrew Forbes and HUST Professor Jian Wang. The results of their work are contained in a paper, Multi-dimensional entanglement transport through a single mode fibre, published online in Science Advances on Friday.

Light is, of course, used to transmit data along optical fibres. This is very fast, but not very secure. The new discovery has very important implications for making that data transmission extremely secure.

The breakthrough makes use of a phenomenon known as quantum entanglement, famously described by Albert Einstein as “spooky action at a distance”. A simple definition of quantum entanglement, given by Charles Choi in a 2009 article in Scientific American, is that it occurs when subatomic “objects can become linked and instantaneously influence one another regardless of distance”.

Other phenomena used are the polarisation of light, for which there are only two values (or aspects) and patterns of light (each pattern can be unique). In principle, there can be an infinite set of light patterns.

Combining these phenomena, the research team engineered quantum entanglement between two photons of light in what the team described as two degrees of freedom of light, that is, the polarisation and the pattern of the light. The polarised photon was sent down the fibre while the other photon accessed the many patterns of light. The result is described as multi-dimensional entangled states.

“In essence, the research introduces the concept of communicating across legacy fibre networks with multi-dimensional entangled states, bringing together the benefits of existing quantum communication with polarised photons with that of high-dimension communication using patterns of light,” said Forbes. “The trick was to twist the one photon in polarisation and twist the other in pattern, forming ‘spirally light’ that is entangled in two degrees of freedom.”

“The novelty in the published work is the demonstration of multi-dimensional entanglement transport in conventional single-mode fibre,” he highlighted. “The light is twisted in two degrees of freedom: the polarisation is twisted to form spirally light, and so is the pattern. This is referred to as spin-orbit coupling, here exploited for quantum communication.”

Edited by Creamer Media Reporter

Comments

The functionality you are trying to access is only available to subscribers.

If you are already a subscriber, you can Login Here.

If you are not a subscriber, you can subscribe now, by selecting one of the below options.

For more information or assistance, please contact us at subscriptions@creamermedia.co.za.

Option 1 (equivalent of R125 a month):

Receive a weekly copy of Creamer Media's Engineering News & Mining Weekly magazine
(print copy for those in South Africa and e-magazine for those outside of South Africa)
Receive daily email newsletters
Access to full search results
Access archive of magazine back copies
Access to Projects in Progress
Access to ONE Research Report of your choice in PDF format

Option 2 (equivalent of R375 a month):

All benefits from Option 1
PLUS
Access to Creamer Media's Research Channel Africa for ALL Research Reports, in PDF format, on various industrial and mining sectors including Electricity; Water; Energy Transition; Hydrogen; Roads, Rail and Ports; Coal; Gold; Platinum; Battery Metals; etc.

Already a subscriber?

Forgotten your password?

MAGAZINE & ONLINE

SUBSCRIBE

RESEARCH CHANNEL AFRICA

SUBSCRIBE

CORPORATE PACKAGES

CLICK FOR A QUOTATION