http://www.engineeringnews.co.za
  SEARCH
Login
R/€ = 13.58Change: 0.05
R/$ = 12.19Change: 0.01
Au 1193.75 $/ozChange: 0.36
Pt 1115.00 $/ozChange: 1.50
 
 
Note: Search is limited to the most recent 250 articles. Set date range to access earlier articles.
Where? With... When?








Start
 
End
 
 
And must exclude these words...
Close Main Search
Close Main Login
My Profile News Alerts Newsletters Logout Close Main Profile
 
Agriculture   Automotive   Chemicals   Competition Policy   Construction   Defence   Economy   Electricity   Energy   Environment   ICT   Metals   Mining   Science and Technology   Services   Trade   Transport & Logistics   Water  
What's On Press Office Tenders Suppliers Directory Research Jobs Announcements Letters Contact Us
 
 
 
RSS Feed
Article   Comments   Other News   Research   Magazine  
 
 
Aug 19, 2011

Corporation launches microfocus X-ray machine

Back
Engineering|Expertise|Africa|Aluminium|CoAL|Copper|Diamonds|Environment|Industrial|Nuclear|System|Systems|Testing|Water|Africa|Energy|Nuclear|Systems|Power|Water|Bearing
Engineering|Expertise|Africa|Aluminium|CoAL|Copper|Diamonds|Environment|Industrial|Nuclear|System|Systems|Testing|Water|Africa|Energy|Nuclear|Systems|Power|Water|Bearing
engineering|expertise|africa-company|aluminium|coal|copper|diamonds|environment|industrial|nuclear-company|system|systems-company|testing|water-company|africa|energy|nuclear-industry-term|systems|power|water|bearing
© Reuse this



Anew microfocus X-ray radiography and tomography machine, for use by South African scientists and researchers, has been launched by the South African Nuclear Energy Corporation (Necsa) at its Pelindaba complex, near Hartbeespoort, in the North West.

South African National Centre for Radio- graphy and Tomography (Sancrat) and Necsa chief scientist for neutron radiography/ tomography Frikkie de Beer explains that use of the facility has been reserved for postgraduate researchers until the end of the year, after which it will be available for use by other researchers.

The device is a self-contained, 225 kV microfocus X-ray computed tomography machine that has a five-axis sample mani- pulator and can be used to study samples up to about 300 mm in diameter, says Belgium-based metrology and radiation imaging specialist Nikon Metrology X-ray imaging engineer Carsten Rudolf.

The machine uses an electron beam focused, in a micrometre-range-sized spot, onto an X-ray-producing multimetal target, either tungsten, copper, molybdenum or silver, which enables researchers to produce different spectra of X-rays without breaking the vacuum chamber.

It boasts chilled-water cooling of the electron beam tube and the X-ray-producing target rod to ensure a stable temperature environment, which improves the consistency and repeatability of results between multiple tests and samples, he adds.

The conical X-ray beam is centred on a Perkin-Elmar flat panel detector about 1 m away from the X-ray source and uses geometric magnification, because X-rays are not modified by lenses, that sees the sample moved closer or further away from the X-ray focal point to produce magnification effects of the signals captured by the detector.

The captured signals are then fed to the heart of the system – a series of computers that use dedicated software to reconstruct the images taken into a three-dimensional (3D) representation of the sample (virtual image), enabling researchers to study and obtain quantitative information (such as volume and size distribution) of the varied materials and surfaces of the samples in a noninvasive and nondestructive manner.

The machine can penetrate, for example, aluminium samples up to 100 mm thick. However, for denser materials, such as carbonates in rocks, steels, titanium or uranium, the samples must be reduced in size and thickness to enable the X-ray beam to penetrate.

Further, the machine can also be fitted with a rotating reflection target. This means that the electron beam focal spot on the target moves in a circle as the target is rotated, enabling a higher energy electron beam (increasing its flux) without melting the surface of the target.

Generating X-rays is an inefficient process where a lot of heat is produced when generat- ing only a few X-ray photons. However, with better cooling, power on a rotating reflection target can be increased over a smaller focal spot or the flux increased to enable faster throughput, says Rudolf.

“Using the same electron beam, the machine can be set up to produce small focal spot sizes, such as spot sizes between 3 µm and 5 µm for reflection targets, 10 µm on rotating targets and 1 µm on transmission targets, which enables researchers to detect inclusions, voids or material properties in resolution of about the spot size if one moves the object close to the focal spot,” he adds, highlighting the machine’s versatility to serve the South African research community.

Objects larger than 300 mm in diameter can be placed in the machine and a partial image generated, but only if X-rays can penetrate the sample and if it fits into the machine. Multiple images of an object can then be combined to create one image of an object larger than 300 mm in diameter using Nikon Metrology’s software, he notes.

The machine and its software have also been designed to enable users to see the contrast between similar-density materials, such as carbon fibres present in a carbon-composite material. Both the fibres and the material are chemically carbon but, by varying the spectrum of the X-rays, the attenuation of the materials can be detected, enabling the machine to produce images from similar- density samples, notes Rudolf.

Indeed, global diamond giant De Beers’ technology division DebTech principal scientist Dr Cecil Churms, speaking at the launch of the system in July, said he had used similar microfocus X-ray technology to identify diamonds present in a core sample by using both the high-power end of the machine’s capabilities, as well as its low-power capabilities, and then used his own mathematical expertise, knowledge of geology and the system’s calculating software to combine the data sets into a 3D model that represented the positions of the diamonds in the sample.

He told the mathematically inclined members of the audience that he used a Fourier transform to Fourier space, weighted it according to the frequency and then did an inverse transform.

Churms emphasised that, by understanding the machine and understanding how variations in parameters affect the image acquired, researchers can get excellent results, even if presented by technically challenging samples, such as a diamond- bearing core sample.

South African and International Research

This system forms part of Necsa’s National Beam Line Centre, which promotes and manages the use of different forms of electro- magnetic and neutron radiation imaging to conduct tests and research.

The centre will comprise the newly launched microfocus X-ray radiography/ tomography facility (Mixrad) and the South African neutron radiography/tomography facility (Sanrad), as well as two more facilities that are being built, namely the high-energy X-ray radiography/ tomo- graphy facility and the gamma radiation radiography/tomography facility, says De Beer.

All the facilities will be operational by 2015. However, the Sanrad facility will be taken off-line in 2012 for one-and-a-half years to enable upgrades that will make it compliant with European standards and operation capabilities.

“The microfocus X-ray addition intro- duces a new era in research with X-ray imaging for South African scientists because the instrument provides a research platform from which competitive applications for beam time at advanced synchrotron facili- ties abroad can be made. Although a few microfocus X-ray instruments are in operation in South Africa, beam time will be available free for general research.

“The Sancrat team works in collaboration with visiting scientists and researchers to Necsa and advises them on the use of neutron or X-ray imaging during their research. We help researchers and clients to obtain the best 3D tomographs from the imaging systems and assist in the evaluation and analysis of the data they have obtained from the machine.”

Further, research scientists and industrial scientists can apply online for beam line time at Sancrat’s facilities during next year, and specifically for Mixrad beam line time from October this year. Information about Necsa’s radiation imaging capabilities is also provided online for researchers to consider.

“The Mixrad facility can be applied to many fields of science, including palaeosciences, archaeology, geosciences, energy (nuclear and coal), biosciences (anatomy and food sciences), civil, mechanical and chemical engineering, as well as nondestructive testing,” he says.

Necsa’s mandate, as determined under the Nuclear Energy Act, is to perform and support research and development in the field of nuclear and radiation science and technology. For Necsa, it is important that this knowledge does not stay at Pelindaba but is used in a collaborative fashion with South African institutions, as well as international institutions, he says.

“We see ourselves as part of the South African national system of innovation and, with our capabilities and our work, aim to ensure that science and technology make a growing difference to our socioeconomic situation and, importantly, to skills development. It places South African capabilities in this regard on par with international standards. We believe this will lead to the development of high-level expertise in South Africa and we hope that we will grow within our role and participation in this.”

Industrial applications of research and development are a crucial part of Necsa’s mandate and partial funding for the machine from the National Research Foundation reflects the view that science and research can help to change South Africa’s socio- economic situation, he concludes.

Edited by: Chanel de Bruyn
Creamer Media Senior Deputy Editor Online
© Reuse this Comment Guidelines (150 word limit)
 
 
 
 
 
 
 
 
Other Science and Technology News
SALT
Science and Technology Minister Naledi Pandor says Africa is gradually expanding its future workforce in science and engineering through astronomy. Speaking at the Southern African Large Telescope (SALT) Conference in Stellenbosch, earlier today, Pandor said...
A three-year partnership agreement recently concluded between the Department of Science and Technology (DST) and the organisers of the yearly Manufacturing Indaba conference has resulted in the confirmed attendance of three leading international manufacturing...
While strongly welcoming the promulgation of the new Part 101 of South Africa’s civil aviation regulations, governing the commercial operation of civil remotely piloted aircraft (RPAs) in South Africa, the Commercial Unmanned Aircraft Association of Southern Africa...
Article contains comments
More
 
 
Latest News
Updated 3 hours ago Describing Mozambique as an “excellent” platform from which to serve key markets in Africa, Bahrain-based industrial group Midal Cables would on Wednesday launch a $50-million, 14 500 m2 aluminum factory located adjacent to the Mozal joint venture aluminium smelter,...
Department of Energy's Deputy Director General in charge of nuclear, Zizamele Mbambo
The Department of Energy (DoE) told Parliament on Tuesday that technical preparations are at an advanced stage and the government is ready to move full steam ahead; but it kept details of how the nuclear programme would be financed firmly under wraps. “We are still...
WNA director-general Agneta Rising
In the next two decades nuclear energy’s share of the world’s power generation mix is projected to increase by several percentage points from 11% currently, as countries strive to meet growing demand by deploying technologies that do not exacerbate global warming....
More
 
 
Recent Research Reports
 
 
 
 
This Week's Magazine
While strongly welcoming the promulgation of the new Part 101 of South Africa’s civil aviation regulations, governing the commercial operation of civil remotely piloted aircraft (RPAs) in South Africa, the Commercial Unmanned Aircraft Association of Southern Africa...
LSM Distributors has contracted engineering consultancy WSP | Parsons Brinckerhoff Africa to undertake the R100-million restoration of the 54-year-old Kyalami racetrack, situated in Midrand. The restoration will assist in re-establishing it as a venue for...
South African Defence Minister Nosiviwe Mapisa-Nqakula has expressed the hope that the defence budget will be significantly increased over the next five years. She did so while addressing the media in her recent budget vote media briefing. The 2015/2016 defence...
The African Development Bank (AfDB) has been an implementing agency for the Global Environment Facility (GEF) since 2008. The relatively young portfolio has 28 projects over 30 countries on the continent according to the 2014 AfDB and GEF annual report released...
PAUL SPEAR Training and development should be an integral and proportionate part of the long-term strategy of all companies, regardless of their size
Investment in South African youth through apprenticeships and learnerships will not only create direct benefits for businesses but will also contribute significantly to job creation and socioeconomic transformation in the country.
 
 
 
 
 
 
 
 
 
Alert Close
Embed Code Close
content
Research Reports Close
Research Reports are a product of the
Research Channel Africa. Reports can be bought individually or you can gain full access to all reports as part of a Research Channel Africa subscription.
Find Out More Buy Report
 
 
Close
Engineering News
Completely Re-Engineered
Experience it now. Click here
*website to launch in a few weeks
Subscribe Now for $96 Close
Subscribe Now for $96