http://www.engineeringnews.co.za
  SEARCH
Login
R/€ = 14.15Change: 0.05
R/$ = 11.58Change: -0.02
Au 1195.87 $/ozChange: -1.05
Pt 1197.50 $/ozChange: 0.00
 
 
Note: Search is limited to the most recent 250 articles. Set date range to access earlier articles.
Where? With... When?








Start
 
End
 
 
And must exclude these words...
Close Main Search
Close Main Login
My Profile News Alerts Newsletters Logout Close Main Profile
 
Agriculture   Automotive   Chemicals   Competition Policy   Construction   Defence   Economy   Electricity   Energy   Environment   ICT   Metals   Mining   Science and Technology   Services   Trade   Transport & Logistics   Water  
What's On Press Office Tenders Suppliers Directory Research Jobs Announcements Contact Us
 
 
 
RSS Feed
Article   Comments   Other News   Research   Magazine  
 
 
Aug 31, 2012

Continuous innovation to ensure SA’s radar, electronic warfare technology remain world class

Back
Africa|Design|Environment|Industrial|PROJECT|Projects|System|Systems|Testing|Africa|South Africa|Building|Equipment|Radar Equipment|Systems|Wideband Real-time Signal Processing|Danny Naicker|Johann De Jager|Klasie Olivier|Warren |ADC|DRFM Technology|FPGA|Improving Radar Technology|Microwave|Radar Technologies|Radar Technology|Radio Frequency
Africa|Design|Environment|Industrial|PROJECT|Projects|System|Systems|Testing|Africa||Building|Equipment|Systems|||
africa-company|design|environment|industrial|project|projects|system|systems-company|testing|africa|south-africa|building|equipment|radar-equipment|systems|wideband-real-time-signal-processing|danny-naicker|johann-de-jager|klasie-olivier|warren|adc|drfm-technology|fpga|improving-radar-technology|microwave|radar-technologies-technology|radar-technology-technology|radio-frequency
© Reuse this



The Council for Scientific and Industrial Research’s (CSIR’s) Electronic Warfare (EW) team is focused on increasing the maturity of its Digital Radio Frequency Memory (DRFM) technology.

Radar and EW systems detect, track, measure, identify, protect and implement counter- measures for sensors operating in the microwave spectrum, CSIR principal systems engineer of experimental EW systems Klasie Olivier explains.

The CSIR’s EW team uses its DRFM technology for testing and evaluating EW and radar equipment in support of industrial and scienti- fic development on its own, as well as in partner- ship with principals from the public and private sectors, in line with the CSIR’s mandate.

“We have our own in-house radar development capability and we assist our radar colleagues by testing radars and assisting with radar development,” Olivier states.

“Currently, we are evaluating the typical performance specifications of the DRFM bandwidth and developing the next generation of DRFM, for which we are aiming towards 2 GHz instantaneous bandwidth – a significant improvement on the current 800 MHz,” says Olivier.

“We aim to complete this concept demonstrator by the second quarter of 2013.”

DRFM technology has continuously been improved to ensure its effectiveness, says CSIR EW team applications principal engineer Warren du Plessis.

The most significant improvement made to this technology since its inception in the 1980s has been the addition of a Field-Programmable Gate Array (FPGA) to the DRFM data path in 2007, which allows wideband real-time signal processing.

“This was a revolutionary improvement, as it made the technology more versatile,” Du Plessis notes, adding that EW researchers are constantly improving the technology to ensure its competitiveness.

DRFM Uses
CSIR radio frequency, radar and EW sys- tems engineer Johann de Jager explains that modern radars emit pulses that contain information which is captured and manipu- lated by DRFM technology to confuse an adversary.

When a radar sends out a pulse to monitor the external environment, such as the ocean surrounding a ship, that pulse can be captured by another vessel through the use of DRFM. It can then be manipulated and sent back to the radar.

The radar then performs processing on the received pulse, which assists in identifying whether a possible target, such as a ship or a helicopter, is nearby or approaching.

“Radar technology is well advanced and radar experts can provide the speed and distance of a target, depending on the information it receives back from the pulse it emitted,” De Jager states.

DRFM technology captures the pulses emitted by radars, digitises the information with an analogue-to-digital converter (ADC) and then manipulates the data so that the information received by a radar will not reveal the actual target’s position and other characteristics.

“We can process the captured information and manipulate the radar pulse to represent what we want it to represent so that the radar under evaluation will see only what we simulate,” he notes.

When a radar operator looks at the display of the manipulated pulse, he or she will not be able to tell that the image on display is only a simulated one and not the actual one. For example, the operator will think it is a real target that is moving away when it is actually approaching.

However, as a result of modern technology, radar can detect whether a DRFM system is creating a target by analysing the pulse it receives, says CSIR systems engineer of radar and EW systems Danny Naicker.

As a result, when we capture a pulse transmitted by radar, we have to make the image we want the pulse to project as realistic as possible.

Actual targets, such as ships or aircraft, produce radar cross section fluctuations and we need to replicate that phenomenon by using complex-scatterer technology so that the pulse we send back to the radar projects a realistic target, he explains.

“This is why technological improvement is critical in areas such as ADCs and firmware development on FPGAs,” Naicker stresses.

“It is a cat-and-mouse game. Radar researchers keep improving radar technology, which enables them to increase their sense of awareness, and the EW researchers keep improving our DRFM technology to provide an acceptable return signal to the radar for detection purposes, but which may be a false return in terms of the real position or other characteristics of the target of interest,” says Olivier.

Further, De Jager states that the CSIR holds a major advantage over global competitors because its EW and radar teams are situated in the same building. This allows researchers and engineers to adapt, compete and compare DRFM and radar technologies, while working together in ensuring that South Africa’s technology base remains among the best in the world.
Olivier adds that the CSIR is one of the few organisations that is able to produce mixed signal layouts on single printed circuit boards with the performance required for this demanding application.

“Mixed signal design is challenging, as you are mixing sensitive analogue and noisy digital signals on the same hardware platform, says Naicker, adding that the CSIR’s DRFM technology has evolved to being more than a typical DRFM.

The technology has been adapted and advanced to work as an EW receiver, a radar transmitter, a DRFM and a radar, he explains.

“The main limit with this technology is your imagination,” Du Plessis states.

CSIR Supporting the MeerKAT
Meanwhile, the CSIR states that its radar experts assisted engineers from the Square Kilometre Array (SKA) project in the characterisation of a wideband ADC for integration into the Karoo Array Telescope (MeerKAT) antennas as a component of the L-band frequency (0.9 – 1.67 GHz) upgrade that is currently under way.

The CSIR performed the characterisation of the ADC, providing the team with an evaluation performed at the intended sampling speed it would use in determining the attain- able performance levels of the eventual system.

With the measured results in hand, the SKA team had the necessary confidence to proceed with designing this ADC for integration into the MeerKAT, the CSIR states.

The MeerKAT is a midfrequency radio telescope and is considered a forerunner to the SKA. It will be the largest and most sensitive radio telescope in the southern hemisphere until the SKA is completed by about 2024.

Edited by: Chanel de Bruyn
© Reuse this Comment Guidelines (150 word limit)
 
 
 
 
 
 
 
 
Other Defence News
Article contains comments
A ministerial medical task team appointed by the minister of defence has made recommendations on how to improve the country's three military hospitals, the department said on Monday. The task team, consisting of nine independent health care professionals, looked at...
When Reutech Radar Systems was set up in 1987, under its original name ESD South (ESD was a subsidiary of the then Barlow Rand group, since “unbundled”), its first programme was Project Hexagon, which the company consciously used to develop a profound understanding...
South African radar company Reutech Radar Systems (RRS) is planning to develop new products next year, while remaining focused on its core businesses. "This is to maintain our momentum in both the defence and commercial markets," says RRS CEO Carl Kies. RRS is a...
More
 
 
Latest News
China appears to have been routinely underestimating output from its sprawling steel sector, with official figures for last year alone 40-million tonnes below a key industry estimate - an amount equivalent to Germany's entire annual production. Beijing has vowed to...
Lumwana, Zambia
Canada’s Barrick Gold Corp will suspend operations at its Lumwana copper mine, in Zambia’s Northwestern province, after the country enacted legislation that raised the royalty rate on openpit mining operations from 6% to 20%. TSX- and NYSE-listed Barrick, the world’s...
The Labour Court in Johannesburg has set aside the 2011-2014 metal sector wage agreement, the National Employers' Association of SA (Neasa) said on Thursday. The 2011-2014 wage deal was the result of an agreement between the Steel and Engineering Industries...
More
 
 
Recent Research Reports
Liquid Fuels 2014 - A review of South Africa's Liquid Fuels sector (PDF Report)
Creamer Media’s Liquid Fuels 2014 Report examines these issues, focusing on the business environment, oil and gas exploration, the country’s feedstock supplies, the development of South Africa’s biofuels industry, fuel pricing, competition in the sector, the...
Water 2014: A review of South Africa's water sector (PDF Report)
Creamer Media’s Water 2014 report considers the aforementioned issues, not only in the South African context, but also in the African and global context, and examines the issues of water and sanitation, water quality and the demand for water, among others.
Defence 2014: A review of South Africa's defence industry (PDF Report)
Creamer Media’s Defence 2014 report examines South Africa’s defence industry, with particular focus on the key participants in the sector, the innovations that have come out of the sector, local and export demand, South Africa’s controversial multibillion-rand...
Road and Rail 2014: A review of South Africa's road and rail infrastructure (PDF report)
Creamer Media’s Road and Rail 2014 report examines South Africa’s road and rail transport system, with particular focus on the size and state of the country’s road and rail network, the funding and maintenance of these respective networks, and the push to move road...
Real Economy Year Book 2014 (PDF Report)
This edition drills down into the performance and outlook for a variety of sectors, including automotive, construction, electricity, transport, steel, water, coal, gold, iron-ore and platinum.
Real Economy Insight: Automotive 2014 (PDF Report)
This four-page brief covers key developments in the automotive industry over the past 12 months, including an overview of South Africa’s automotive market, trade figures, production and the policies influencing the sector.
 
 
 
 
 
This Week's Magazine
South Africa remains an important manufacturing and export platform for Ford Motor Company, says executive chairperson Bill Ford. However, he adds that other countries on the continent are “becoming interesting”, and that the US carmaker is casting its net wider for...
TO BE PHASED INTO SERVICE The first MeerKAT dish, with another 63 to come
Germany’s Max-Planck-Society (MPG) and the Max-Planck-Institute for Radio Astronomy (MPlfR) are investing €11-million (about R150-million) into South Africa’s MeerKAT radio telescope array programme. The money will be used to design, build and install S-band radio...
Infrastructure spend in sub-Saharan Africa will grow from $70-billion in 2013 to $180-billion by 2025, says PwC capital projects and infrastructure Africa leader Jonathan Cawood. This is one of the findings of PwC’s Capital Projects & Infrastructure report on East...
Private-owned defence and aerospace manufacturer Paramount Group and the Ichikowitz Family Foundation unveiled its Anti-Poaching Skills and K9 Training Academy in Magaliesburg last month.
MATT BARKER Wireless networks should enable users to engage and must provide relevant information to them based on their activity and location
The inclusion of Bluetooth to provide sub-three meter accuracy and heightened functionality for users is one of the ways to change existing wireless networks into engagement networks. An engagement network differs from common wireless networks in that it enables the...
 
 
 
 
 
 
 
 
 
Alert Close
Embed Code Close
content
Research Reports Close
Research Reports are a product of the
Research Channel Africa. Reports can be bought individually or you can gain full access to all reports as part of a Research Channel Africa subscription.
Find Out More Buy Report
 
 
Close
Engineering News
Completely Re-Engineered
Experience it now. Click here
*website to launch in a few weeks